Tissue-specific direct targets of Caenorhabditis elegans Rb/E2F dictate distinct somatic and germline programs.

Kudron M, Niu W, Lu Z, Wang G, Gerstein M, Snyder M, Reinke V.
Genome biology. 2013;14(1):R5.
Abstract
BACKGROUND: The tumor suppressor Rb/E2F regulates gene expression to control differentiation in multiple tissues during development, although how it directs tissue-specific gene regulation in vivo is poorly understood. RESULTS: We determined the genome-wide binding profiles for Caenorhabditis elegans Rb/E2F-like components in the germline, in the intestine and broadly throughout the soma, and uncovered highly tissue-specific binding patterns and target genes. Chromatin association by LIN-35, the C. elegans ortholog of Rb, is impaired in the germline but robust in the soma, a characteristic that might govern differential effects on gene expression in the two cell types. In the intestine, LIN-35 and the heterochromatin protein HPL-2, the ortholog of Hp1, coordinately bind at many sites lacking E2F. Finally, selected direct target genes contribute to the soma-to-germline transformation of lin-35 mutants, including mes-4, a soma-specific target that promotes H3K36 methylation, and csr-1, a germline-specific target that functions in a 22G small RNA pathway. CONCLUSIONS: In sum, identification of tissue-specific binding profiles and effector target genes reveals important insights into the mechanisms by which Rb/E2F controls distinct cell fates in vivo.