Storing and analyzing genomics signal data sets with Genomedata, Segway and Segtools

Max Libbrecht
Postdoc, Bill Noble’s group
University of Washington, Seattle
Genomedata, Segway and Segtools: How to use the Segway pipeline to store and analyze genomics signal data sets
How can we understand a new collection of genomics data?

Signal data: bedgraph format
How can we understand a new collection of genomics data?

Signal data:

- bedgraph format

Genomedata

Signal data:

- Genomedata format
How can we understand a new collection of genomics data?

Signal data:
- bedgraph format

Genome annotation

Segway

Genomedata

Signal data: Genomedata format
How can we understand a new collection of genomics data?

- Signal data: bedgraph format
- Genomedata
- Segway
- Segtools
- Genome annotation
- Summary plots
Platform and installation

To install:

Ubuntu/Debian:
 sudo apt-get install libhdf5-serial-dev hdf5-tools
CentOS/RHEL/Fedora:
 sudo yum -y install hdf5 hdf5-devel
OpenSUSE:
 sudo zypper in hdf5 hdf5-devel libhdf5

wget http://melodi.ee.washington.edu/downloads/gmtk/gmtk-1.4.4.tar.gz
tar xf gmtk-1.4.4.tar.gz
cd gmtk-1.4.4
./configure
make
make install

pip install numpy
pip install numexpr
pip install cython
pip install genomedata
pip install segway
pip install segtools

Genomedata, Segway and Segtools are supported on Linux.
Documentation and more information

Genomedata: https://www.pmgenomics.ca/hoffmanlab/proj/genomedata/

Segway: https://www.pmgenomics.ca/hoffmanlab/proj/segway/

Segtools: https://www.pmgenomics.ca/hoffmanlab/proj/segtools
Genomedata, Segway and Segtools: How to use the Segway pipeline to store and analyze genomics signal data sets
Genomedata stores a collection of genomics tracks

Genomedata archive (HDF5)

GM12878_H3K4me3
GM12878_DNase
GM12878_RNAseq
K562_H3K4me3
...

Key feature: *random access*
Loading data into genomedata

$ genomedata-load-assembly data.genomedata hg19.fa

For each track:
$ genomedata-open-data data.genomedata GM12878_H3K4me3

$ genomedata-load-data data.genomedata GM12878_H3K4me3 < GM12878_H3K4me3.bedgraph

$ genomedata-close-data data.genomedetadata
Accessing data (command line)

$ genomedata-query data.genomedata GM12878_H3K4me3 chr1 1000000 1000100
fixedStep chrom=chr1 start=1000000
16.8
17.9
14.0
1.2
...

GM12878_H3K4me3
Accessing data (Python)

```python
>>> import genomedata
>>> g = genomedata.Genome("data.genomedata")
>>> g["chr1"][1000000:1000100, "GM12878_H3K4me3"]
array([ 16.8, 17.9, 14.0, 1.2, ...], dtype=float32)
```
Information about a genomedata archive (command line)

```
$ genomedata-info tracknames data.genomedata
GM12878_H3K4me3
GM12878_DNase
GM12878_RNAseq
K562_H3K4me3
...

$ genomedata-info contigs data.genomedata
chr1 0 249250621
chr2 0 243199373
...
```
Genomedata, Segway and Segtools: How to use the Segway pipeline to store and analyze genomics signal data sets
Semi-automated genome annotation algorithms partition and label the genome on the basis of functional genomics tracks

Human interpretation: 1 = “Enhancer”, 2 = “Exon”, …
Running Segway

segway train data.genomedata traindir

segway identify data.genomedata traindir identifydir

output: identifydir/segway.bed.gz
chr1 0 150 5
chr1 150 700 2
...

Using a compute cluster

Segway supports distributed computing using Grid Engine and Platform LSF.

To run Segway without a cluster, set
$ export SEGWAY_CLUSTER=local
Input tracks

--track=GM12878_H3K27ac --track=GM12878_H3K4me3
OR
--tracks-from=tracks.txt

tracks.txt:
GM12878_H3K27ac
GM12878_DNase
GM12878_RNAseq
K562_H3K4me3
...
Input coordinates

Genome coordinates

```
--include-coords=coords.bed
```

```
coords.bed:
chr1   151158060   151658060
chr10  55483812    55983812
```

```
--exclude-coords=blacklist.bed
```

Training minibatch size

```
--minibatch-fraction=0.01
```

https://sites.google.com/site/anshulkundaje/projects/blacklists
Training parameters

Number of annotation labels
--num-labels=25 (Recommended: 4 - 50)

Number of EM initializations
--num-instances=10 (Recommended: 10)

Maximum number of EM training iterations
--max-train-rounds=100 (Recommended: 100)
Controlling segment lengths

Downsampling resolution
--resolution=10 (Recommended: 1 - 10,000)

Long segments prior
--prior-strength=1.0 (Recommended: 0 - 10+)

Weight on transition part of the model
--segtransition-weight-scale=10 (Recommended: \approx number of tracks)
Genomedata, Segway and Segtools: How to use the Segway pipeline to store and analyze genomics signal data sets
segtools-signal-distribution measures relationships between annotation labels and signal tracks
segtools-length-distribution measures segment lengths
genome coverage

segtools-length-distribution segway.bed.gz

Fraction of genome

Segment length

1_Promoter
2_Enhancer
...
segtools-aggregation measures associations with other genome annotations

segtools-aggregation --normalize --mode=gene segway.bed.gz gencode.gff

Annotation

Region annotation

Point annotation

Gene annotation

Upstream (10kb) First exon Middle exons Last exon Downstream (10kb)

1_Promoter
2_Enhancer
3_Quiescent

...
Thank you