

ENCODE Long Read RNA-Seq Analysis Protocol for Human
Samples (v3.0)

Prepared by Dana Wyman
March 4, 2020

Ali Mortazavi Lab, University of California, Irvine

Contact Information

Dana Wyman
2300 Biological Sciences III
University of California Irvine
Irvine, CA 92697-2300
Telephone: (949) 824-8393
Email: dwyman@uci.edu

Ali Mortazavi
2218 Biological Sciences III
University of California Irvine
Irvine, CA 92697-2300
Telephone: (949) 824-6762
Email: ali.mortazavi@uci.edu

I. Overview

The long-read RNA-seq data on the ENCODE portal was processed with the ENCODE
DCC deployment of the TALON pipeline (available with documentation here:
https://github.com/ENCODE-DCC/long-read-rna-pipeline).

This document describes 1) the steps used to generate the fastqs submitted to the
DCC, and 2) individual tasks that make up the TALON pipeline as we run them in our
lab. The software versions used can be found in Table 1.

Prior to DCC submission, data processing is performed with Circular Consensus (CCS),
Lima, and Refine, which are part of the SMRTanalysis software suite available from
Pacific Biosciences. They perform the following tasks, respectively:

1. Arrive at a consensus read of insert (ROI) sequence for each cDNA transcript
2. Remove primer/adaptor sequences from the reads
3. Separate full-length ROIs from non full-length. Full-length ROIs are defined by

the presence of a polyA tail and an adaptor sequence on each end. This step is
very important because it also orients each full-length read to the correct strand
using the poly(A) tail as a guide.

https://github.com/ENCODE-DCC/long-read-rna-pipeline

ENCODE PacBio Iso-seq Analysis Protocol (v.3.0)

Ali Mortazavi Lab, University of California, Irvine

The output from Refine consists of full-length, non-chimeric reads in the
fastq/fasta format, and these reads form the entry point to the DCC pipeline
implementation. From here, the reads are mapped to the genome using Minimap2 to
generate output in the sam/bam format. TranscriptClean is run on the mapped reads to
correct remaining errors such as noncanonical splice junctions and microindels. Finally,
TALON is run to annotate the transcripts and quantify their abundance.

Table 1: Referenced Software

Name Version Available from

DCC TALON
pipeline
implementation

 https://github.com/ENCODE-DCC/long-read-rna-pipelin
e

CCS 4.0.0 https://github.com/PacificBiosciences/pbbioconda

Lima 1.10.0 https://github.com/PacificBiosciences/pbbioconda

Isoseq3 Refine 3.2.2 https://github.com/PacificBiosciences/pbbioconda

Minimap2 2.17 https://github.com/lh3/minimap2

TranscriptClean 2.0.2 https://github.com/dewyman/TranscriptClean

TALON 5.0 https://github.com/dewyman/TALON

Samtools 1.3 https://sourceforge.net/projects/samtools/files/samtools/
1.3/

2

ENCODE PacBio Iso-seq Analysis Protocol (v.3.0)

Ali Mortazavi Lab, University of California, Irvine

II. Computational analysis

The programs used in this section are all part of the PacBio SMRTanalysis software
suite.

A. Obtaining reads of insert with Circular Consensus (CCS)

Multiple SMRT cells may be sequenced per library in order to get > 1,000,000 raw
reads, resulting in a subreads.bam file for each SMRT cell. CCS must be run on each
of these files individually to generate consensus reads of insert (ROIs).
CCS is run using the following parameters:

ccs \

--noPolish \
--minLength=10 \
--minPasses=3 \
--min-rq=0.9 \
--min-snr=2.5 \
--reportFile ccs_report.txt \
subreads.bam \
ccs.bam

Each CCS run produces a bam file, ccs.bam. The sequences in these files are ‘reads
of insert’ (ROIs), which represent the consensus sequence of each read.

B. Isolating full-length, non-chimeric reads with Lima and Refine

The purpose of this step is to identify full-length, non-chimeric (FLNC) reads based on
the presence of a poly-A tail at the 3’ end and adaptor sequences on each end, and to
orient the reads correctly with respect to strand. Non full-length reads are filtered out at
this point. A further role of Refine is to identify and filter out chimeric PacBio reads,
which form when each end of a SMRTbell adaptor attaches to a different
double-stranded cDNA molecule rather than to the blunt ends of the same one.

Lima and Refine are run on each ccs.bam file separately using the following
parameters:

3

ENCODE PacBio Iso-seq Analysis Protocol (v.3.0)

Ali Mortazavi Lab, University of California, Irvine

lima ccs.bam \
 PB_adapters.fasta \
 fl.bam \
 --isoseq \
 --num-threads 12 \
 --min-score 0 \
 --min-end-score 0 \
 --min-signal-increase 10 \
 --min-score-lead 0

isoseq3 refine fl.primer_5p--primer_3p.bam \
 PB_adapters.fasta \
 flnc.bam \
 --min-polya-length 20 \
 --require-polya \
 --num-threads 12

The flnc.bam output file contains the full-length, non-chimeric ROIs. We convert
flnc.bam to the fastq format using the following command:

bam2fastq -o flnc -u flnc.bam

The fastq files for all of the SMRT cells are concatenated together and submitted to the
DCC . This file represents the starting input for their long read RNA-seq pipeline.
Note: the quality scores in this file are not meaningful.

C. Alignment to the reference genome

We next align the FLNC reads to the GRCh38 XY human reference genome
(https://www.encodeproject.org/data-standards/reference-sequences/). Run Minimap2
with the following parameters:

minimap2 -t 16 -ax splice:hq -uf --MD \
 GRCh38.fa \
 flnc.fastq \
 > Aligned.out.sam

The output file will be called Aligned.out.sam:

D. Reference-based error correction

I. Extract reference splice junctions

4

https://www.encodeproject.org/data-standards/reference-sequences/

ENCODE PacBio Iso-seq Analysis Protocol (v.3.0)

Ali Mortazavi Lab, University of California, Irvine

TranscriptClean (next section) requires a file of reference splice junctions in order to
correct noncanonical junctions in the PacBio transcripts. To get this file, we run a
TranscriptClean utility on the GENCODE v29 comprehensive gene annotation
(reference chromosomes only). This file is available here:
https://www.gencodegenes.org/human/release_29.html

python ${TranscriptCleanPath}/accessory_scripts/get_SJs_from_gtf.py \
 --f ../gencode.v29.annotation.gtf \
 --g GRCh38.fa \
 --o gencode_v29_SJs.tsv

The output file gencode_v29_SJs.tsv, contains splice junctions derived from the short
reads. For each splice junction, it lists genomic location, strand, intron motif, and two
additional placeholder columns (to match formatting to a type of STAR splice junction
file).

II. Error correction with TranscriptClean

Although the CCS process catches many of the errors found in PacBio transcripts,
longer reads and/or those with fewer passes are still prone to mismatch and microindel
errors. If these occur on the boundary of an intron, they may create the mistaken
appearance of a novel splice junction. TranscriptClean is a Python program we
developed to compare the sequences of mapped isoforms to the reference genome and
correct likely errors. It can be downloaded from Github at
https://github.com/dewyman/TranscriptClean. A file of reference splice junctions for
(described in previous section) serves as a reference for correcting junctions. In
addition, download a file of all common human variants from dbSNP Build150 (April
2017 release) in the VCF format to run TranscriptClean in variant-aware mode. This file
can be found at: https://www.ncbi.nlm.nih.gov/variation/docs/human_variation_vcf/). To
make sure that the chromosome naming convention of this file matches the hg38
reference genome, run the following commands:

zcat 00-common_all.vcf.gz | \
 awk '{if($0 !~ /^#/ && $0 !~ /^chr/) print "chr"$0; else print $0}' \
 > tmp_00-common_all.vcf
gzip tmp_00-common_all.vcf
mv tmp_00-common_all.vcf.gz 00-common_all.vcf.gz

When using variant-aware mode, mismatches and indels are compared to the VCF
variant set, and are not modified in the event of a perfect variant match. Unmapped

5

https://www.gencodegenes.org/human/release_29.html
https://github.com/dewyman/TranscriptClean

ENCODE PacBio Iso-seq Analysis Protocol (v.3.0)

Ali Mortazavi Lab, University of California, Irvine

isoforms are discarded by TranscriptClean, and in the case of multi-mapping, only the
primary mapping is used. Run TranscriptClean version 2.0.2 on the FLNC reads using
the parameters below.

python TranscriptClean.py \

--sam Aligned.out.sam \
--genome GRCh38.fa \
--spliceJns gencode_v29_SJs.tsv \
--correctMismatches true \
--correctIndels true \
--variants 00-common_all.vcf.gz \
--maxLenIndel 5 \
--maxSJOffset 5 \

 --canonOnly \
--outprefix libraryID

This command will generate two output files: libraryID_clean.sam and
libraryID_clean.fa. These contain the reads with corrections made to remove
microindels, mismatches, and noncanonical splice junctions as specified by the
parameters. The inclusion of the --canonOnly parameter ensures that all of the reads in
the output contain only canonical splice junctions or noncanonical splice junctions that
are supported by the reference annotation.

E. Annotate and quantify reads

PacBio is prone to artifacts from internal priming since it uses poly-A selection. In order
to screen for this in the data, run the following:

talon_label_reads --f libraryID_clean.sam \
 --g GRCh38.fa \
 --t 16 \
 --ar 20 \
 --deleteTmp \
 --o libraryID

This will generate an output SAM file, libraryID_labeled.sam. Each read in the output
has a tag indicating the fraction of As in the 20-bp interval following the end of the
alignment.

6

ENCODE PacBio Iso-seq Analysis Protocol (v.3.0)

Ali Mortazavi Lab, University of California, Irvine

In order to compare long read platforms side by side and to track isoforms consistently
across multiple datasets, we developed a technology-agnostic long read annotation tool
called TALON. It is designed to annotate full-length reads as known or novel transcripts
and also to report abundance for these transcripts. Corrected reads are passed into the
TALON program, which is built around an SQLite database initialized to contain known
genes, transcripts, and exon models from the GENCODE v29 GTF transcriptome
annotation.

talon_initialize_database \
 --f gencode.v29.annotation.gtf \
 --a gencode_v29 \
 --g mm10 \
 --l 0 \
 --idprefix ENCODEH \
 --5p 500 \
 --3p 300 \
 --o talon.db

In a TALON run, each input SAM transcript is compared to the existing transcript
models in the database on the basis of its splice junctions, start, and end points. This
allows us to not only assign a novel gene or transcript identity where appropriate, but to
incorporate new transcript models in the TALON database while characterizing how
they differ from known transcript models.

In order to take advantage of TALON’s transcript filtering utilities, we run biological
replicates through the program together. First, we create a comma-delimited config file
(config.csv) with metadata about the samples. Column 1 is the unique dataset ID,
column 2 is the cell type, column 3 is the platform, and column 4 is the input sam file.
Here is an example:

Rep1,CellLine,PacBio-Sequel2,Rep1/libraryID1_labeled.sam
Rep2,CellLine,PacBio-Sequel2,Rep2/libraryID2_labeled.sam

7

ENCODE PacBio Iso-seq Analysis Protocol (v.3.0)

Ali Mortazavi Lab, University of California, Irvine

Next, we run TALON:

talon --f config.csv \
 --db talon.db \
 --build hg38 \
 --cov 0.9 \
 --identity 0.8 \
 --o cellLine

The TALON approach to quantification relies on each long read representing an
individual transcript molecule sequenced, which allows us to quantify expression by
simply counting the number of reads that were assigned to a particular transcript or
gene and then converting these values to units of transcripts per million (TPM). To
obtain a raw abundance file, run the following command on the TALON database:

talon_abundance \
 --db talon.db \
 -a gencode_v29 \
 --build hg38 \
 --o cellLine

The resulting file, cellLine_talon_abundance.tsv, can be used to compute gene-level
expression values. For gene expression, we include all reads assigned to a locus, since
even novel transcripts that did not meet the threshold to become a new transcript model
are informative for the overall gene expression level. On the transcript level, however,
we apply our TALON filters in order to avoid quantifying transcript models with
insufficient evidence. Our filtering process uses the novelty labels assigned to each
observed transcript model in order to remove likely artifacts. Observed transcripts that
fully match counterparts in the GENCODE annotation are accepted immediately, but
novel transcripts must be reproducibly detected at least 5 times in each biological
replicates in order to be included in the downstream analysis. In addition, reads
annotated with a putative internal priming event (> 0.5 As in 20bp after alignment) are
excluded from the filtering process. Genomic transcripts are always removed, since they
are not likely to constitute real isoforms. Note: if biological replicates are not
available for the sample in question, replicate-based filtering of novel transcripts
is not possible. Treat these results with caution.

To obtain a filtered abundance file for the datasets, run the following commands to first
create a transcript whitelist and then apply it during abundance table generation:

8

ENCODE PacBio Iso-seq Analysis Protocol (v.3.0)

Ali Mortazavi Lab, University of California, Irvine

talon_filter_transcripts \

--db talon.db \
-a gencode_v29 \
--maxFracA 0.5 \

 --minCount 5 \
 --minDatasets 2 \

--datasets Rep1,Rep2 \
 --o whitelist.csv

talon_abundance \
 --db talon.db \
 -a gencode_v29 \
 --build hg38 \
 --whitelist whitelist.csv \
 -d Rep1,Rep2 \
 --o cellLine

It is also possible to generate a custom GTF transcriptome annotation for the samples from the
TALON database. This file contains only transcript models from those samples that passed the
TALON filters. The start and end coordinates used for these models are the ones first recorded
in the database, so for known transcripts, that means the ones from GENCODE. To generate a
filtered GTF, use the transcript whitelist we generated earlier:

talon_create_GTF \
 --db talon.db \
 -a gencode_v29 \
 -b hg38 \
 --whitelist whitelist.csv \
 --o cellLine_filtered

9

ENCODE PacBio Iso-seq Analysis Protocol (v.3.0)

Ali Mortazavi Lab, University of California, Irvine

IV. References

1. Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34,
3094–3100 (2018).

2. Gordon, S. P. et al. Widespread Polycistronic Transcripts in Fungi Revealed by

Single-Molecule mRNA Sequencing. PLoS ONE 10, e0132628 (2015).

3. Li H.*, Handsaker B.*, Wysoker A., Fennell T., Ruan J., Homer N., Marth G.,
Abecasis G., Durbin R. and 1000 Genome Project Data Processing Subgroup
(2009) The Sequence alignment/map (SAM) format and SAMtools.
Bioinformatics, 25, 2078-9.

4. Wyman, D., TranscriptClean: A program for correcting mismatches, microindels,

and noncanonical splice junctions in long reads, (2018), GitHub repository,
https://github.com/dewyman/TranscriptClean

5. Wyman, D., TALON: Technology agnostic long read analysis pipeline for
transcriptomes, (2019), GitHub repository, https://github.com/dewyman/TALON

10

https://github.com/dewyman/TranscriptClean
https://github.com/dewyman/TALON

