Day One

Setting Up ChIPs:

From previous optimization, you should know the cell number in your samples.

- Add the appropriate amount of sheared chromatin, starting at column 1 row 1, to a 96 well 1mL deepwell plate. For instance, If you want 1e6 cells for a ChIP and there are 1e7 cells/mL, you would add 100λ of sheared chromatin. When diluting your chromatin with ChIP Dilution Buffer, keep in mind that you want your final concentration of SDS to be 0.1%.
- 2. Adjust your ChIP vol. with ChIP Dilution Buffer (CDB) plus protease inhibitors to desired volume. (16.7mM Tris-HCl pH 8.1, 167mM NaCl, 0.01% SDS, 1.1% Triton X-100, 1.2mM EDTA).
- 3. Add appropriate amount of your antibody of interest to each well.
- 4. Seal plate and incubate on plate rotator overnight in the cold room at $4^{\circ}C$
- 5. Ensure low salt and high salt buffers being used for washes are @ 4° C.

<u>Day Two</u>

Protein A/G Bead Wash:

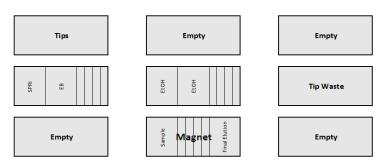
- 1. Add 55uL of protein A/G beads for every ChIP being run into a microfuge tube (i.e. if you are performing 8 ChIPs, add 440uL of protein A/G beads to the tube).
- 2. Place beads on magnet and remove supernatant.
- 3. Add double the original volume of blocking buffer (PBS+0.5% TWEEN, 0.5% BSA + protease inhibitors)
- 4. Repeat steps 2. and 3. twice.
- 5. When primary incubation is complete, add 100uL of washed beads to each sample.
- 6. Cover the plate and place on plate rotator in cold room for at least 1 hour.

ChIP Wash

1. While samples are incubating, stamp volumes of the following reagents onto appropriate plates and keep at 4°C until the protocol is about to be run.

	Reagent	For 8 Samples		(100uL)		
	Reverse Crosslinking	Buffer 62.5 uL				
	Proteinase K	25 uL				
	RNase A	8.33 uL				
Reagent		Volum	e Aspira	ted (uL)	Volume to	o Stamp (uL)
LS, HS			170		20	00
LiCl, TE		1	.70 (x2)		40	00
CEB		62.5			75	
Reverse Cro	-			10		
	Tips	Low Salt Buffer High Salt	Buffer cEB		Liquid Waste	
Barrazon	Criosalinine Envymes	Lid Buffer	2		Tip Waste]
	Tips	Em	pty	Sannia	Magnet	

2. Cover plate with film and reverse cross link entire sample including beads at 65°C for at least 3 hours.


3. Include 10uL input, 50uL EB and 10uL reverse cross linking mix to additional well on plate (if you don't already have it).

Day Two/Three

SPRI Clean Up After Reverse Cross Linking:

- 1. After reverse cross-linking, Stamp volumes of the following reagents onto plates according to the table and place them on the Bravo deck according to the diagram below.
 - **Be sure to move the magnet from position 9 to position 8 before starting and switch profiles**

Reagent	Volume Aspirated (uL)	Volume to Stamp (uL)
SPRI	130.5	150
75% EtOH	175(x2)	200
Elution Buffer	40	50

- 2. When the protocol is finished, the final elution (40uL) will be in columns 9-12 of the original sample plate.
- 3. Use Qubit to analyze ChIP concentration.

Buffers for ChIP

Blocking Buffer (4°C); PBS+0.5% TWEEN, 0.5% BSA add PI (protease inhibitor cocktail) ChIP Dilution Buffer (4°C); 16.7mM Tris-HCI pH8.1, 1.1% Triton X-100, and 167mM NaCl, 1.2mM EDTA, 0.01% SDS Direct ChIP Elution Buffer (RT); 10mM Tris-HCI pH 8.0, 5mM EDTA, 300mM NaCl, 0.1% SDS. Complete buffer by adding 5mM DTT before adding elution buffer. RIPA High Buffer (4°C); 0.1% SDS, 1% Triton x-100, 1mM EDTA, 20mM Tris-HCI pH 8.1, 500mM NaCl, 0.1% DOC RIPA Low Buffer (4°C); 0.1% SDS, 1% Triton x-100, 1mM EDTA, 20mM Tris-HCI pH 8.1, 140mM NaCl, 0.1% DOC LiCl Wash Buffer (4°C); 250mM LiCl, 0.5% NP40, 0.5% Na Deoxycholate, 1mM EDTA,10mM Tris-HCI pH 8.1 TE Buffer pH 8.0 (4°C); 10mM Tris-HCI pH8.0, 1mM EDTA pH 8.0 Reverse x-linking Buffer (-20°C); 250mM Tris-HCI pH 6.5, 62.5mM EDTA pH 8.0, 1.25M NaCl, 5mg /ml Proteinase K, 62.5ug/ml RNAse A

For 1 Step Lysis:

1% SDS Cell Lysis Buffer 1% SDS, 10mM EDTA, 50 mM Tris-HCL pH 8.1

For 2 Step Lysis:

Cell Lysis Buffer: 20mM Tris pH 8.0, 85mM KCl, 0.5% NP40 Nuclear Lysis Buffer: 10mM Tris-HCl pH7.5 ml, 1% NP40, 0.5% Na Deoxycholate, 0.1% SDS

Appendix:

Robotic Protocol Overview:

The following sections list the general steps performed by each protocol and the order in which they are performed. *ChIP Wash:*

- 1. Sample is placed on a magnet to magnetize the chromatin/bead complex.
- 2. Supernatant is removed, leaving behind the chromatin/bead complex.
- 3. 170uL of low salt buffer are added to the chromatin/bead complex and the complex is resuspended off the magnet.
- 4. Chromatin/bead complex is magnetized and supernatant is removed.
- 5. 170uL of high salt buffer are added to the chromatin/bead complex and the complex is resuspended off the magnet.
- 6. Chromatin/bead complex is magnetized and supernatant is removed.
- 7. 170uL of lithium chloride buffer are added to the chromatin/bead complex and left on the magnet.
- 8. Supernatant is removed.
- 9. Steps 7-8 are repeated.
- 10. 170 uL of TE are added to the chromatin/bead complex and left on the magnet.
- 11. Supernatant is removed.
- 12. Steps 10-11 are repeated.
- 13. 62.5 uL of ChIP elution buffer are added to the chromatin/bead complex and is resuspended off the magnet.
- 14. Resuspended chromatin/bead complex is transferred to a plate containing proteinase K and RNase A, mixed and magnetized.
- 15. The supernatant from the transferred mixture is transferred back to the original plate and mixed to collect any chromatin/bead complex that was left behind before being transferred back to the other plate.
- 16. Step 15 is repeated two additional times.

1.8x SPRI Cleanup Following Reverse Crosslinking and Deproteination of Chromatin:

- Sample is placed on a magnet and the supernatant is transferred to a new well in the plate, leaving protein A/protein G beads behind.
- 2. The plate is moved off the magnet and 130.5uL of SPRI beads are added to the sample, mixed, and incubated for 5 minutes.
- 3. The plate is moved back on the magnet and the supernatant is removed.
- 4. The sample is washed twice with 175uL of 75% ethanol and dried for 4 minutes.
- 5. 40uL of elution buffer are added to the sample, resuspended off the magnet, and allowed to incubate for 2 minutes.
- 6. Sample is magnetized and supernatant is transferred to a new well.